SYNTHESIS OF 2,3-BIS(p-METHOXYPHENYL) INDOLE-2-14C

Richard C. Thomas Pharmaceutical Research and Development Division, The Upjohn Company, Kalamazoo, Michigan 49001, U.S.A. Received on February 24, 1975.

SUMMARY

2,3-Bis(p-methoxyphenyl)indole-2-¹⁴C was prepared at a specific activity of 1.71 mCi/mM from $Ba^{14}CO_3$ by a 4-step synthetic sequence in 23% overall radiochemical yield.

INTRODUCTION

Metabolism studies with the nonsteroidal, antiinflammatory agent, 2,3-bis(p-methoxyphenyl)indole (I), required the preparation of a radioactive form of the

drug. Carbon-14 was chosen as the label since probable routes for biotransformation of I would involve hydroxylation of the aromatic rings; a tritium label would possibly be lost. The synthetic route chosen involved introducing carbon-14 into the 2-position of the indole ring by the Fischer indole synthesis, as described by Szmuszkovicz, *et al.* (1) for preparing I in a nonradioactive form.

EXPERIMENTAL

Radioactivity Measurements

All counting was performed with Packard Tri-Carb, Model 314EX2A and 3375, liquid scintillation spectrometers using conditions suitable for measuring carbon-14. Appropriate aliquots of samples were dissolved in 15 ml of scintil-© 1975 by John Wiley & Sons, Ltd. lation solvent [toluene-dioxane-methanol (350:350:210 by volume) containing 73 g of naphthalene, 4.6 g of 2,5-diphenyloxazole, and 0.08 g of 1,4-bis-2-(5-phenyl-oxazolyl)-benzene per L.] The absolute counting efficiency for each sample was determined by recounting following addition of an internal standard of carbon-14 labeled toluene and results then expressed as millicuries (mCi).

Thin-layer chromatograms were scanned for radioactivity with a Vanguard Model 885 radiochromatogram scanner.

Thin-Layer Chromatography

Thin-layer chromatograms were developed by the ascending method on 5 x 20 cm glass plates having 0.25-mm layers of silica gel G in the following systems: (a) ethyl acetate-cyclohexane (1:4 by volume) and (b) acetone-hexane-ammonium hydroxide (200:200:1 by volume). Zones absorbing ultraviolet light were located as fluorescence-quenched areas when thin-layer chromatograms were viewed under short-wavelength UV light.

Synthesis

p-Methoxybenzyl Chloride (III) - This was prepared by the method of Grice and Owen (2) from *p*-methoxybenzyl alcohol and $SOCl_2$. The final product was purified by distillation through a 30-cm Vigreaux column; b.p., 114-115° (15 mm). This material was stored under nitrogen in the refrigerator until used.

p-Methoxybenzylmagnesium Chloride (IV) - This was prepared by the reaction of equimolar quantities of magnesium and p-methoxybenzyl chloride in tetrahydrofuran using the usual anhydrous conditions. It was necessary to activate the magnesium by allowing it to react with a drop of methyl iodide in a few ml of ethyl ether prior to adding the tetrahydrofuran solution of p-methoxybenzyl chloride. A 3-hour reflux period was required to completely consume the magnesium. The Grignard solution was found to be 0.24 M by titration.

p-Methoxyphenylacetic-1-¹⁴C Acid (V) - This was prepared from 0.60 g (3 mM) of Ba¹⁴CO₃ (20 mCi) and 5 mM of the Grignard reagent (IV) using the procedure and apparatus described by Eberson (3). Following carbonation, the complex of V was decomposed with 1<u>N</u> H₂SO₄ and the reaction mixture was transferred to a separatory funnel with ether. Carrier p-methoxyphenylacetic acid (1.21 g) was added and the

356

reaction mixture was extracted with ether. The combined ether extracts were reduced in volume and extracted with 3 portions of 1<u>N</u> Na₂CO₃. The combined alkaline extracts were acidified with 6<u>N</u> H₂SO₄ and extracted with ether. After drying over Na₂SO₄, the ether was evaporated and the residue was recrystallized from water to yield 1.58 g of V having a specific activity of 1.74 mCi per mM. The radiochemical yield was 83%.

Desoxyanisoin-carbonyl-14C (VII) - The bulk of the above p-methoxyphenylacetic- $1-1^{4}$ C acid (1.55 g, 9.3 mM) and 2.1 ml (28 mM) of SOC1₂ were refluxed for 2 hours. Excess $SOCl_2$ was then removed by evaporation on a rotary evaporator at 50° in vacuo. Two 5-ml portions of CS₂ were added successively and removed by evaporation to eliminate the last traces of thionyl chloride. CS_2 (14 ml) and 2.1 ml (19mM) of anisole were added to the crude acid chloride in the reaction flask and the reaction mixture was cooled in an ice bath. Anhydrous AlCl₃ (4.3)g) was added very carefully in portions with stirring and the reaction mixture was allowed to stir under a reflux condenser and drying tube at room temperature overnight. The reaction mixture was poured onto cracked ice containing 3 ml of HCl and then transferred to a separatory funnel with methylene chloride. The phases were separated and the aqueous phase was extracted 2 additional times with methylene chloride. The combined organic extracts were washed successively with 1N NaOH solution and water and then dried over Na₂SO₄. The methylene chloride was removed in vacuo and the residue was recrystallized from EtOH-H₂O with the aid of Darco G-60 to obtain 1.51 g (5.9 mM, 63% yield) of product having a melting point of 109-110° (capillary, uncorrected; authentic VII melted at 109-110°).

2,3-Bis (p-Methoxyphenyl) Indole-2-¹⁴C (I) - Into a round-bottom flask equipped with a water-separating trap, reflux condenser, and drying tube were added 1.50 g (5.86 mM) of desoxyanisoin-carbonyl-¹⁴C, 0.64 g (5.91 mM) of phenylhydrazine, 0.05 ml of acetic acid and 7 ml of benzene. The reaction mixture was carefully refluxed for 3 hours. At the end of this period, 11.5 ml of 3Nethanolic HCl was added and the reaction mixture was refluxed 1.25 additional hours with stirring. The solvent was evaporated with a nitrogen stream and 5 ml of water and 5 ml of methylene chloride were added. The layers were separated and the aqueous phase was extracted 3 additional times with methylene chloride. A white crystalline material separated and was removed by filtration during this procedure. The methylene chloride extracts were combined and washed successively with IN NaOH solution, water, 5% HCl, water, and brine. The organic phase was dried over Na_2SO_4 , evaporated to 5 ml, and applied to a 75-cm column of Florisil packed in methylene chloride. The column was of a special design such that the top one-third had a 30 mm diameter, the middle one-third a 20 mm diameter, and the bottom one-third a 10 mm diameter. The column was eluted with methylene chloride while collecting 5-ml fractions. Progress of elution was followed by viewing the column with a long-wavelength ultraviolet lamp. Following removal of solvent from the individual tubes, fractions 24-30 deposited solids whereas those beyond tube 30 deposited oil. Fractions 24-30 were combined (0.98 g) and recrystallized from ethanol to obtain 0.83 g (2.52 mM, 43% yield) of product having a melting point of 151-151.5° (capillary, uncorrected; authentic I melted at 149.5- 150.5°). A second crop of 0.075 g was obtained from the mother liquor for a total yield of 47%. The specific activity of the product was 1.71 mC per mM. Its ultraviolet and infrared absorption spectra corresponded to authentic I. Thin-layer chromatography on silica gel GF using the systems described revealed in each case a single radioactive and ultraviolet-absorbing zone corresponding to authentic I. Anal. Calcd. for C22H19NO2: C, 80.2; H, 5.8; N, 4.2. Found: C, 79.9; H, 6.1; N, 4.2.

RESULTS AND DISCUSSION

The sequence for synthesis of 2,3-bis(p-methoxyphenyl)indole-2-¹⁴C (I) is shown in Scheme 1. The overall yield of I, based on Ba¹⁴CO₃, was 23%.

p-Methoxybenzyl chloride (III) was found to be rather unstable. Even when stored under dry nitrogen and in the refrigerator a precipitate formed within several days. It was therefore used within 2 days of its preparation. p-Methoxyphenylmagnesium chloride (IV) could not be prepared in ethyl ether because of its insolubility in that solvent. Tetrahydrofuran proved to be a satisfactory solvent, however, even though it was necessary to activate the magnesium and required 3 hours of reflux to consume the magnesium. Carbonation of the Grignard reagent

(IV) with $^{14}CO_2$ using the apparatus of Eberson (3) went smoothly to give pmethoxyphenylacetic acid (V) in 83% yield. The conversion of V to the acid chloride (VI) and its condensation with anisole using AlCl₃ resulted in a 63% yield of desoxyanisoin (VII). Condensation of the free acid (V) with anisole in liquid HF might have been a better approach but the 63% yield using AlCl₃ proved satisfactory.

ACKNOWLEDGEMENTS

Thanks are due members of the Physical and Analytical Chemistry unit for the analyses reported and Drs. J. Szmuszkovicz and C. Y. Peery for helpful suggestions.

REFERENCES

- Szmuszkovicz, J., Glenn, E. M., Heinzelman, R. V., Hester, Jr., J. B., and 1. Youngdale, G. A. - J. Med. Chem. 9:527 (1966).
- 2. Grice, R. and Owen, L. N. - J. Chem. Soc.: 1947 (1963).
- Eberson, L. Acta Chem. Scand. 16:781 (1962). 3.